2 research outputs found

    Neural Video Compression with Temporal Layer-Adaptive Hierarchical B-frame Coding

    Full text link
    Neural video compression (NVC) is a rapidly evolving video coding research area, with some models achieving superior coding efficiency compared to the latest video coding standard Versatile Video Coding (VVC). In conventional video coding standards, the hierarchical B-frame coding, which utilizes a bidirectional prediction structure for higher compression, had been well-studied and exploited. In NVC, however, limited research has investigated the hierarchical B scheme. In this paper, we propose an NVC model exploiting hierarchical B-frame coding with temporal layer-adaptive optimization. We first extend an existing unidirectional NVC model to a bidirectional model, which achieves -21.13% BD-rate gain over the unidirectional baseline model. However, this model faces challenges when applied to sequences with complex or large motions, leading to performance degradation. To address this, we introduce temporal layer-adaptive optimization, incorporating methods such as temporal layer-adaptive quality scaling (TAQS) and temporal layer-adaptive latent scaling (TALS). The final model with the proposed methods achieves an impressive BD-rate gain of -39.86% against the baseline. It also resolves the challenges in sequences with large or complex motions with up to -49.13% more BD-rate gains than the simple bidirectional extension. This improvement is attributed to the allocation of more bits to lower temporal layers, thereby enhancing overall reconstruction quality with smaller bits. Since our method has little dependency on a specific NVC model architecture, it can serve as a general tool for extending unidirectional NVC models to the ones with hierarchical B-frame coding

    End-to-End Learnable Multi-Scale Feature Compression for VCM

    Full text link
    The proliferation of deep learning-based machine vision applications has given rise to a new type of compression, so called video coding for machine (VCM). VCM differs from traditional video coding in that it is optimized for machine vision performance instead of human visual quality. In the feature compression track of MPEG-VCM, multi-scale features extracted from images are subject to compression. Recent feature compression works have demonstrated that the versatile video coding (VVC) standard-based approach can achieve a BD-rate reduction of up to 96% against MPEG-VCM feature anchor. However, it is still sub-optimal as VVC was not designed for extracted features but for natural images. Moreover, the high encoding complexity of VVC makes it difficult to design a lightweight encoder without sacrificing performance. To address these challenges, we propose a novel multi-scale feature compression method that enables both the end-to-end optimization on the extracted features and the design of lightweight encoders. The proposed model combines a learnable compressor with a multi-scale feature fusion network so that the redundancy in the multi-scale features is effectively removed. Instead of simply cascading the fusion network and the compression network, we integrate the fusion and encoding processes in an interleaved way. Our model first encodes a larger-scale feature to obtain a latent representation and then fuses the latent with a smaller-scale feature. This process is successively performed until the smallest-scale feature is fused and then the encoded latent at the final stage is entropy-coded for transmission. The results show that our model outperforms previous approaches by at least 52% BD-rate reduction and has ×5\times5 to ×27\times27 times less encoding time for object detection. It is noteworthy that our model can attain near-lossless task performance with only 0.002-0.003% of the uncompressed feature data size.Comment: Under peer review for IEEE TCSV
    corecore